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Abstract

Purpose – This work is devoted to the experimental analysis, numerical modelling and validation of
ice melting processes.

Design/methodology/approach – The thermally coupled incompressible Navier-Stokes equations
including water density inversion and isothermal phase-change phenomena are assumed as the
governing equations of the problem. A fixed-mesh finite element formulation is proposed for
the numerical solution of such model. In particular, this formulation is applied to the analysis of two
different transient problems.

Findings – The numerical results computed with the finite element formulation have been found to
be very similar to the corresponding predictions, also obtained in this study, provided by a finite
volume enthalpy-based technique. Both numerical results, in turn, satisfactorily approached the
available experimental measurements expressly conducted in the context of this work for validation
purposes.

Research limitations/implications – They are mainly due to some model simplifications (e.g. no
volume changes are considered during the solid-liquid transformation) and to the inherent difficulties
associated with the experimental measurements.

Practical implications – This study may be relevant for a better understanding of the
phenomena occurring in different engineering applications involving phase-change in
water: food freezing, ice formation in pipes, freezing/melting processes in soils, ice growth in plane
wings, etc.

Originality/value – The study is mainly focused on the validation of the numerical predictions
obtained with the finite element formulation mentioned above with other results provided by a
well-known finite volume technique and, in addition, with available laboratory measurements carried
out in the context of this work.
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Nomenclature
V ¼ arbitrary open bounded domain

ðV ¼ Vl <VsÞ
G ¼ smooth external boundary of V
Vl ¼ time-varying liquid (water) domain
Vs ¼ time-varying solid (ice) domain

Y ¼ time interval of interest (t [ Y)
r ¼ density
m ¼ dynamic viscosity
v ¼ velocity vector
p ¼ pressure
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b ¼ specific body force vector
1 ¼ rate of deformation tensor
T ¼ temperature
C ¼ specific heat capacity
L ¼ specific latent heat

K ¼ isotropic thermal conductivity
fpc ¼ phase-change function
f ¼ spatial gradient operator
†
ð Þ ¼ time derivative of ( )

1. Introduction
The proper description of many industrial applications like refinement of metals,
casting or freezing procedures requires the analysis of phase-change phenomena
involving convective effects. The analysis of such complex problems can be performed
through physical scaled models aimed at providing valuable experimental data that
allow, in turn, to achieve a better understanding of the process and, eventually, to
evaluate particular engineering requirements. Usually, this information is more easily
obtained in such a form than from the real situation. On the other hand, the numerical
modelling is an alternative option to analyse several processes involving thermally
coupled flows with phase-change since computational simulations are now-a-days
recognised as powerful tools that may help to predict physical behaviours and to
identify mechanisms that appear in the different applications. Nevertheless, these
numerical analyses present difficulties related to mathematical and computational
aspects that have led, during the last years, to the development of robust formulations
with the corresponding numerical assessment and experimental validation of their
predictions (Brent et al., 1988; Cruchaga and Celentano, 2001; Dantzig, 1989; Khodadadi
and Zhang, 2001; Lacroix and Voller, 1990; Lewis and Ravindran, 2000; McDaniel and
Zabaras, 1994; Swaminathan and Voller, 1993; Webb and Viskanta, 1986 and
references therein).

In particular, the study of phase-change in water is relevant in different
engineering applications: food freezing, ice formation in pipes, freezing/melting
processes in soils, ice growth in plane wings, etc. Therefore, many authors have
been devoted their efforts to specifically analyse the natural convection in water
evaluating the effect of density inversion as well as its interaction with the ice
melting process (Ishikawa et al., 2000; Rieger and Beer, 1986; Tsai et al., 1998;
Yamada et al., 1997).

In this work we present a thermally coupled flow modelling of ice melting processes.
The aim of this study is the assessment of the performance of the fixed-mesh finite
element temperature-based (FE-TB) formulation proposed by Cruchaga and Celentano
(2001) when density inversion and isothermal phase-change phenomena are
considered. To this end, the corresponding numerical predictions are compared with
other results also computed in this work using a well-known finite volume
enthalpy-based technique and, in addition, with available laboratory measurements
carried out in the context of the present research. The governing differential equations
(linear momentum, continuity and energy) are presented in Section 2 together with a
brief description of the two referred fixed-grid techniques, respectively, developed in
the contexts of the finite element and finite volume methods. These methodologies are
applied in the analysis of two ice melting problems described in Section 3. Special
attention is given to the numerical assessment and experimental validation of the
computed results. Finally, the effects of natural convection and heat transfer conditions
on the flow response are also discussed.
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2. Governing equations and discrete models
In the present analysis, the description of ice melting process in water is assumed to be
given by the incompressible Newtonian laminar flow equations in addition to the heat
transfer balance as:

. equation of motion:

r
†
vþ rðv ·7Þvþ 7p2 7ð2m1Þ ¼ rb in Vl £ Y ð1Þ

. continuity equation:

7 · v ¼ 0 in Vl £ Y ð2Þ

. energy equation:

r cþ L
›f pc

›T

� �
†
T þ v ·7T

� �
¼ 7ðk7TÞ in V £ Y ð3Þ

together with adequate (standard) boundary and initial conditions and an appropriate
constitutive relationship for the phase-change function fpc (Cruchaga and Celentano,
2001). The constitutive model for the isothermal phase-change function considered in
this work to represent the phase-change behaviour of water is chosen as the
temperature-dependent Heaviside function written in terms of the melting temperature
Tm as f pc ¼ H ðT 2 TmÞ. This definition leads to fpc ¼ 0 and fpc ¼ 1 in the solid and
liquid phases, respectively, (i.e. fpc ¼ 0 in Vs and fpc ¼ 1 in Vl).

The water density inversion phenomenon is taken into account in the specific body
force vector expression b ¼ gfa, where g is the gravity acceleration vector and fa(T) is
the buoyancy factor. Additionally, temperature-dependent dynamic viscosity, specific
heat capacity and thermal conductivity are considered in the present model.

It should be noted that equations (1) and (2) are, in fact, only solved in the liquid
domain since the solid region is assumed to be fixed (i.e. a zero velocity field is adopted
for this phase). In contrast, the energy equation (3) is computed in the whole domain V
considering a continuous temperature field. Therefore, this model describes a purely
thermal conductive behaviour for the solid phase. Moreover, the effect of the latent heat
release occurring at the phase-change (ice-water) interface is, as reported in Cruchaga
and Celentano (2001), implicitly incorporated in the function fpc, i.e. the classical Stefan
phase-change boundary condition is embedded in the thermal balance given by
equation (3). This interface is considered as an internal boundary where the fluid
velocity is prescribed to zero.

2.1 Finite element temperature-based model (FE-TB)
The non-isothermal incompressible Navier-Stokes set of equations (1)-(3) is discretized
within the context of the finite element method by using a generalized streamline
operator technique. This fixed-mesh finite element thermally coupled flow formulation
including phase-change effects has been previously presented in Cruchaga and
Celentano (2001). The related variational formulation, which enables the use of equal
order interpolation functions for the nodal unknowns, intrinsically provides some
stabilization terms aimed at improving the numerical response for dominant
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convection problems and, additionally, it does not need tuning parameters chosen
outside the model in the definition of the upwinding coefficients. On the other hand, the
latent heat effects are taken into account through a temperature-based model able to
deal with either isothermal or non-isothermal phase-changes. For the isothermal
phase-change problem particularly studied in this work, the discontinuity of fpc

existing at the liquid-solid interface is circumvented in the corresponding weak form
by using a boundary integral over such front that properly captures the latent heat
release (further details can be found in Celentano, 1998). Moreover, the temporal
discretization of the unknowns is performed using an Euler backward scheme.
This methodology is not restricted to structured meshes and can directly be applied to
3D problems.

The resulting strongly coupled system of discretized equations is solved via a
staggered scheme that preserves the coupling degree given by the energy transport
terms and the temperature-dependent flow properties. In this framework, due to the
high nonlinearity present in this formulation, the computational solution of the fluid
dynamics and heat transfer problems is carried out using a Newton-Raphson type
algorithm.

2.2 Finite volume enthalpy-based model (FV-HB)
In this case, the set of equations (1)-(3) is discretized using a staggered grid in which the
pressure and temperature are computed at the center node of the cell whereas the
velocity and heat flux are evaluated at the cell’s faces. Linear interpolation functions
are used for these variables in the calculation of viscous forces and conduction heat
fluxes. Moreover, the power law differencing scheme is considered to calculate the
convective terms (FLUENT, 1999).

In this context, the energy equation (3) is written in terms of the enthalpy where the
phase-change is assumed to occur in a small temperature range ½Tm 2 Tm=2; Tm þ
Tm=2� (DTm is chosen as 0.28C in the problems of Section 3). Details about the
procedure to handle the inherent nonlinearity of the phase-change energy term can be
found in Brent et al. (1988), Lacroix and Voller (1990) and Swaminathan and Voller
(1993).

The resulting algorithm solves in a sequential way the linear momentum, continuity
and energy discretized equations. Moreover, under-relaxation is applied during the
iterative procedure (FLUENT, 1999). In the simulations carried out in this work,
the under-relaxation factor for the velocity components and pressure is around 0.1
while that for the temperature ranges between 0.6 and 0.8.

The performance of both models (referred as FE-TB and FV-HB from here onwards)
is assessed in the analysis of the problems presented in Section 3.

3. Numerical and experimental validation: results and discussion
Two different melting processes of ice are presented in this section. The aims of the
present analyses are: to describe the influence of both buoyancy effects and different
heat transfer boundary conditions on the numerical responses predicted by the FE-TB
model, to assess these results with those obtained with the FV-HB method and, finally,
to compare both simulations with some available experimental measurements.

As already mentioned, the buoyancy effects developed under the gravity action
(g ¼ 9.8 m/s2) are described in the simulations by using a temperature-dependent
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factor fa(T) able to deal with the water inversion effect (1=f a ¼ 1:0 þ A1T þ A2T
2þ

A3T
3 þ A4T

4 with A1 ¼ 20:6789 £ 1024;A2 ¼ 0:9073 £ 1025;A3 ¼ 20:9646 £
1027; A4 ¼ 0:8737 £ 1029 where T is expressed in 8C). The temperature
relationships for different properties in the liquid phase (buoyancy factor, dynamic
viscosity, specific heat capacity and thermal conductivity) are shown in Figure 1
(Ishikawa et al., 2000). The specific heat capacity and thermal conductivity in the solid
phase are taken as constants with values corresponding to those at 08C of the c 2 T
and k 2 T curves, respectively. The latent heat considered in the study is
L ¼ 335,000 J/kg with a melting temperature Tm ¼ 08C. The density is assumed
constant and equal in both phases with the value r ¼ 999.8395 kg/m3 (i.e. for
simplicity, the effect of density change between ice and water is not included in the
analysis).

3.1 Melting of ice inside a horizontal cylinder
This problem, exhaustively analysed in Rieger and Beer (1986), is presented here to
assess the performance of the FE-TB formulation by illustrating the effect of density
inversion on the response of the system. Moreover, these results are compared with
those also computed in the context of the present work using the FV-HB technique. The
problem is schematically shown in Figure 2. The ice is initially at rest and occupies
the whole domain. In the computations, the ice (solid material) is fixed at the center of
the cylinder. The initial temperature of the rod is 20.018C, the cylinder has a radius
R0 ¼ 0.03 m and the prescribed temperature at the wall is assumed constant as
Tw ¼ 68C. In this configuration, the rod of ice is expected to reduce its diameter (2R0) as
it melts. Nevertheless, as observed in the experiments reported in Rieger and Beer
(1986), such reduction was found not to be the same along different radial lines due

Figure 1.
Temperature-dependent
properties of water

1.0002
1

0.9998
0.9996
0.9994
0.9992
0.999

0.9988
0.9986
0.9984
0.9982

0 5 10

Temperature [C]

15 20

B
uo

ya
nc

y 
fa

ct
or

0.018

0.0017

0.0016

0.0015

0.0013

0.0014

0.0012

0.0011

0.001D
yn

am
ic

 v
is

co
si

ty
 [

kg
/m

 s
]

0 5 10 15 20

Temperature [C]

4220

4215

4210

4205

4200

4195

4190

4185

4180
0 5 10

Temperature [C]
15 20Sp

ec
if

ic
 h

ea
t c

ap
ac

ity
 [

J/
kg

 c
]

0.6

0.595

0.59

0.585

0.58

0.575

0.57

0.565

0.56
0 5 10 15 20

Temperature [C]

C
on

du
ct

iv
ity

 [
W

/m
 c

]

HFF
17,5

552



to the presence of natural convection with density inversion that develops during the
process.

The same spatial and time discretizations were used for the FE and FV computations.
Owing to symmetry, half of the domain has been considered and meshed with
approximately 5,000 four-noded isoparametric elements (using 90 elements in the radial
direction with a non-uniform distribution to properly describe the strong velocity and
temperature gradients expected near the wall: 15 elements for the radius interval
[0.0;0.015 m] and 75 elements for [0.015;0.030 m]). The adopted time step was 20 s.

In order to evaluate the effect of density inversion on the melting evolution, a
preliminary simulation is performed considering the classical Boussinesq approach given
by a linear approximation of the buoyancy factor f a ¼ 1 2 aT , witha ¼ 1:1 £ 10248C21

being the secant (between 4 and 208C) volumetric expansion coefficient. In this case, the
Stefan (Ste ¼ cðTw 2 TmÞ=L), Rayleigh (Ra ¼ gaðTw 2 TmÞR

3
0r

2c=ðmkÞ)) and Prandtl
(Pr ¼ mc=k) numbers are 0.075, 8.7 £ 105 and 10.8, respectively, (m, c and k evaluated at
68C). The isotherms and streamlines computed with the FE-TB model are shown in
Figure 3. The strong thermally induced flow motion is apparent. This fact is also reflected
in the ice radius reduction (r/R0, r being the instantaneous radius) history curve shown in
Figure 4. It is seen that the greater reductions occur at the upper face of the ice. Moreover, a
pure conduction heat transfer analysis has also been performed for comparison purposes
(note that in this last case the radius reduction evolution is independent of the angle f).
Clearly, the natural convection promotes higher cooling rates that can be appreciated in
the more advanced positions of the corresponding phase-change front with respect to
those computed using the pure heat conduction model.

Figure 5 shows the isotherms and streamlines obtained with the FE-TB model
considering density inversion. This effect provides smoother results than those of
Figure 3 owing to the smaller characteristic lengths (along the radial direction in this
case) of the regions in which the several vortexes develop. The radius reduction
histories of the interface position plotted in Figure 6 exhibit similar responses for the
different orientations. A slower phase-change interface evolution is observed in
comparison with that of Figure 4. Moreover, unlike the results obtained with the

Figure 2.
Melting of ice inside a

horizontal cylinder:
problem description
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Boussinesq approximation, the density inversion causes the occurrence of greater
reductions at the lower face of the ice.

Figure 7 shows the FE-TB and FV-HB solutions for the ice radius evolution together
with the corresponding experimental measurements reported by Rieger and Beer
(1986). A very good agreement between both formulations can be observed (although
not shown, satisfactory fittings were also obtained for the results corresponding to the
pure conduction model and the Boussinesq simulation). In addition, it is seen
that the numerical solutions approximately adjust the measurements. Finally, it is

Figure 3.
Melting of ice inside a
horizontal cylinder
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Notes: FE-TB results obtained with a linear (Boussinesq type) buoyancy factor. (a) Isotherms (plotted 
1ºC apart from Tw = 6ºC) and (b) streamlines (plotted 5x10–7 m2/s apart; clockwise + and 
anti-clockwise –) at different times of the analysis
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important to remark that all the trends appreciated in Figures 5-7 are in good
comparison with the numerical results presented by Rieger and Beer (1986).

3.2 Melting of a square rod of ice immersed in water
An experimental and numerical study of an ice melting process developed in a water
environment is presented. A rod of ice ten times longer than the horizontal side of its
transversal square section was submerged in a box of glass filled with water in order to
reproduce conditions closer to a two dimensional situation at the middle transversal
section. The dimensions of the rod and box are shown in Figure 8(a). The
thermocouples (type T, copper-constantan with diameter 0.0015 m) were positioned in
the middle-transversal plane as shown in Figure 8(b). Thermocouple 11 served
as environmental temperature controller. The measurements taken from
thermocouples 1, 8, 10, 14 and 15 contributed to evaluate the effect of the heat
transfer along the water interface and the glass walls. All the thermocouples were
calibrated with a digital thermometer where the average error in the measurements
was estimated as ^0.58C. The ice rod was frozen during almost 5 h at a temperature
low enough to produce a uniform and complete solidification and, additionally, to avoid
a crack due to a thermal shock when the rod was immersed in the water. A set of nearly
20 experiments were carried out but only eight were accepted considering a reasonable
recurrence in the following aspects: initial air and water temperatures, a nearly square
initial rod section with a maximum admissible error of ^0.002 m in its height (this
error corresponds to 7 per cent of the initial section) and the permanence of the rod in
the correct position during the test (evaluated through a visual observation confirmed
by similar temperature evolutions registered by the thermocouples symmetrically
located). According to that, only the measurements taken during the first 4 min were
considered. One of the experiences that satisfied all the mentioned conditions is
reported in the present work. The initial section of the rod was 0.03 m wide and 0.028 m

Figure 4.
Melting of ice inside a

horizontal cylinder

Notes: FE-TB results obtained with a linear (Boussinesq type) buoyancy factor for 
the radius evolution at 0º (   ), 90º (    ) and 180º (    ). The results computed with a pure 
heat conduction model are plotted in dashed lines
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height with a temperature of 24.38C, the environmental temperature was 25.98C and
the initial water temperature was 14.78C. The final transversal section of the rod
experienced a reduction of approximately 30 per cent. The temperature measurements
are shown in Figure 9. Similar evolutions in points symmetrically located have been
observed (not shown). Moreover, the greater temperature variations occur in those
regions close to the ice in the bottom of the cavity. The temperature evolutions
corresponding to thermocouples 9, 12 and 13 are not shown since they did not exhibit
significant variations during the analysis like the responses found for points 1, 2, 7 and
8. The unexpected temperature behaviour registered by thermocouple 16 situated in
the center of the ice rod denotes a localised early melting process in the vicinity of the

Figure 5.
Melting of ice inside a
horizontal cylinder
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t= 4500 s t= 6000 s
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Notes: FE-TB results obtained with a fourth order buoyancy factor (accounting for density inversion). 
(a) Isotherms (plotted 1ºC apart from Tw = 6ºC) and (b) streamlines (plotted 1x10–7 m2/s apart; 
clockwise + and anti-clockwise –) at different times of the analysis
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thermocouple tip due to metal-ice contact effects. This undesirable response could have
been minimise by using thinner wires. Further details of the experimental procedure
can be found in Cruchaga and Celentano (2005).

This problem was simulated with the same ice and water material properties used
in the former problem. The initial water and environmental temperatures considered in
the computations were 15 and 268C, respectively. Non-slip conditions on both the glass
walls and the ice-water interface were considered. Owing to symmetry, only a half of
the domain shown in Figure 8(b) was analysed. The finite element mesh was composed
of 80 £ 80 uniformly distributed standard four-noded elements. The time step size
used was 0.5 s.

Three different cases were studied: a purely conductive model (case A) and a natural
convection analysis (case B) both with adiabatic boundaries and, in addition, a natural
convection system considering heat transfer effects in the cavity walls (case C). For case
C, a heat transfer coefficient of 250 W/m28C has been chosen as a boundary condition
representing the glass walls conduction with a thickness of 0.004 m. For simplicity, this
case has been studied adopting the same heat transfer conditions for the top boundary
(free surface of water). Although the models behind the first two cases (A and B)
involve simplified physical mechanisms and, therefore, no realistic predictions can be a
priori expected from them, their computations are useful to quantitatively assess the
influence of two particular aspects which are difficult to estimate from the experiments:
fluid convection and heat flux across the external boundaries.

Experimental and FE-TB results for the temperature evolutions at different points
are shown in Figure 9. The decreasing experimental evolutions registered by
thermocouples 6 and 18 together with the nearly constant temperature histories at
thermocouples 5 and 7 denote the presence of other heat transfer mechanisms than
purely thermal conduction. The similar variations observed in thermocouples 6 and 18
make evident the development of natural convection in the bottom of the cavity.

Figure 6.
Melting of ice inside a

horizontal cylinder
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Figure 7.
Melting of ice inside a
horizontal cylinder

Notes: Radius evolution (including density inversion) at (a) 0º, (b) 90º and 
(c) 180º obtained with FE-TB (  ) and FV-HB (  ) models together with the 
experimental measurements (  ) reported by Rieger and Beer (1986)
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The heat flux through the boundary may be, as a preliminary approach, considered
negligible based on the steady temperature recorded by thermocouple 8. Therefore, the
natural convection effects are firstly evaluated by comparing the numerical responses
corresponding to cases A and B.

The numerical results for the purely conductive model with adiabatic walls (case A)
exhibit practically the same temperature evolutions for points 5 and 6 with large
reductions of their values with respect to the initial ones. A constant temperature
history is obtained for points 7, 8 and 18 showing that the heat flux does not reach their
positions during the analysis. Moreover, the temperature evolutions predicted for this
case present a significant discrepancy with the measurements (see, e.g. points 5, 6
and 18). On the other hand, the analysis including natural convection with adiabatic
walls (case B) shows that the fluid motion induced by buoyancy effects mainly affects
the temperature evolutions at points 5 and 18. At point 5, which shows temperatures
greater than those predicted in case A, the hot fluxes promoted by convection partially
compensate the cooling effect caused by the ice melting. Nevertheless, the temperature
discrepancy between the numerical and experimental results is not diminished by this
mechanism. The temperature reduction experienced by point 18 reflects a dominant
convective response in this region in sharp contrast to the constant value found for
case A. Although the numerical trend agrees with the measurements at this point, the
temperature predictions decrease more drastically than the experimental values.
Furthermore, note that the temperature evolution of point 6 qualitatively adjusts the
results of case A but with lower values for advanced times of the analysis.

Owing to the numerical-experimental discrepancy observed in the previous cases,
the effects of the heat transfer along the glass walls are additionally taken into account
in the simulation (case C). The corresponding results, also shown in Figure 9,
satisfactorily agree with the experimental measurements, in particular at
thermocouples 5, 7 and 8. The temperature evolution predicted at thermocouple 6
shows a good description of the physical trend while the numerical results for
thermocouple 18 reasonably represent the experimental data, mainly at the end of the
analysis. The influence of the inward heat flux along the external boundaries is
apparent on the temperature histories at points 5, 6 and 18. In addition, as commented

Figure 8.
Melting of a square rod of

ice immersed in water:
experimental set-up. (a)
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above, it is seen that the simulation does not capture the local melting produced in the
vicinity of the thermocouple 16.

Although the results computed for case C are close to the experimental data,
numerical oscillations remain in the predictions. This fact is directly attributable to the
high level of fluid convection present in this simulation. The temperature evolution at

Figure 9.
Melting of a square rod of
ice immersed in water Notes: experimental (   ) and FE-TB results for the temperature evolutions for cases 
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points situated near the ice and the bottom of the cavity denotes a slightly oscillatory
behaviour that reflects the development of an incipient transitional flow regime during
the melting process. It should be also noted that the heat flux discontinuity existing at
the liquid-solid interface, which corresponds to the isothermal phase-change
considered in the analysis, introduces instabilities in the numerical solution. One
possible option to avoid this problem would consist in the dynamic enhancement of the
interpolation of the variables (velocity, pressure and temperature) in regions close to
such moving interface. It should be mentioned that simple mesh and time step
refinements could not overcome this drawback since similar results to those computed
for case C have been obtained with a numerical analysis using a non-uniform mesh of
100 £ 160 elements (refined near the bottom of the cavity) and a smaller time step of
0.1 s (results not shown).

FE-TB results for the phase-change front position, isotherms and streamlines
computed for case C are shown in Figure 10 at different instants of the analysis. The
high convection occurring in the lateral face of the ice together with the incoming heat
flux through the bottom wall are the main mechanisms that cause the motion of the
phase-change front. These facts were also observed in the experience where the flow
developed at the bottom of the ice rod promoted the clips release at about 4 min. The
final volume of the ice is computed as 70 per cent of the original one; this value is
similar to that observed in the measurements. A stratified temperature distribution is
observed in the whole cavity with flat isotherm profiles. This thermal distribution is a
feature typically found in natural convection studies of confined square cavities with
high Rayleigh numbers (Ishikawa et al., 2000). Based on a characteristic length of 0.1 m
that corresponds to the height of water, a characteristic temperature variation of 158C
usually taken as the difference between the initial water temperature and the melting
temperature, the resulting Rayleigh number for this case is 8.1 £ 107. Since, the
isotherm of 48C (inversion temperature) remains close to the lateral edge of the ice, the
inversion effects do not play a relevant role in the process. The largest temperature
gradients are located at the phase-change interface and along the lower wall. Finally,
the motion of the cold fluid current in the bottom of the cavity is perturbed by the hot
incoming heat flux that generates some waves which, in turn, produces a complex flow
pattern associated with the temperature distribution in this region (this last
phenomenon was also observed in the experience).

To assess the performance of the FE-TB formulation proposed for the analysis
when density inversion and isothermal phase-change phenomena are considered, a
computation using the FV-HB model is also carried out for case C. The same space-time
discretization is adopted for the current finite volume simulation. The experimental
measurements together with the computed results for the temperature evolutions are
shown in Figure 11. It is seen that both numerical predictions satisfactorily agree with
the experimental measurements. In particular, slightly better results are computed
with the FE-TB model at thermocouples 5, 6 and 7. Similar transient responses have
been also found for the phase-change front position, isotherms and streamlines
contours computed with the FE-TB and FV-HB models (results not shown).

4. Conclusions
Two different ice melting problems have been analysed using a fixed-mesh FE-TB
formulation. The computed results have been found to be very similar to the
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corresponding predictions, also obtained in this study, provided by a finite volume
enthalpy-based technique. Both numerical results, in turn, satisfactorily approached
the available experimental measurements expressly conducted in the context of this
work for validation purposes. Moreover, the natural convection together with the heat
transfer boundary conditions have been observed to play an important role in the
thermally coupled flow behaviour developed during the ice melting process.

Figure 10.
Melting of a square rod of
ice immersed in water

(a)

(b)

(c)

t= 20s t= 100s t= 240s

16 ˚C

0.000002

0.000002
0.000002

16 ˚C

16 ˚C

Notes: FE-TB results at different instants for case C. (a) Phase-change front position, (b) isotherms 
(plotted 2 ºC apart from 4 ºC to 16 ºC) and (c) streamlines (plotted 3.5×10–6 m2/s apart from 
2.0×10–6 m2/s to 1.6×10–5 m2/s).
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Further research will be focused on the improvement of the model (e.g. treatment of
localised oscillations in the numerical response and consideration of volume changes
owing to the solid-liquid transformation) and also on experimental tasks (e.g.
additional temperature measurements in regions with strong convection, better control
of the heat transfer conditions at the boundaries and implementation of a device to
measure fluid velocities) with the final aim of getting more valuable data to achieve a
more complete validation of the simulations.

Figure 11.
Melting of a square rod of

ice immersed in water
Notes: Experimental (   ), FE-TB (   ) and FV-HB (   ) results for the temperature evolutions for case C
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